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ABSTRACT

When latent class parameters are estimated, maximum likelihood and Pearson

chi-square statistics can be derived for assessing the fit of the model to the

data. This study uses simulated data to compare these two statistics.

Data were generated for a 2-class unconstrained model and a 3-class

constrained model. Data were also generated under three independent variables.

Those variables are sample she and two parameters that define latent class

models--conditional response probability and latent class proportion.

Parameters were estimated for the generation models and a series of

subsumed and subsuming models. Maximum likelihood and Pearson chi-square

statistics were derived for each estimation. Distributions of fit statistics

were prcduced by 1000 replications. For each distribution of statistics, the

overall fit to tht appropriate chi-square distribution is assessed. In

addition, the mean, variance, and tail weights are examined.

The distributions of the statistics vary according to the parameter values

of the models and the type of models estimated. When the estimated model is an

accurate reflection of the data, the Pearson statistic is generally

distributed as chi-square for both large and small samples, while the maximum

likelihood statistic is distributed as chi-square only at the large sample

size.
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COMPARISON OF MAXIMUM LIKELIHOOD AND PEARSON

CHI-SQUARE STATISTICS FOR LATENT CLASS MODELS

Latent class modeling is a probabilistic modeling strategy that can be

used for establishing relations between response patterns on manifest variables

and latent categorical variables. This probabilistic approach allows for the

establishment of statistical criteria for testing the fit of theoretical models

to the observed data (Bergan, 1982; Clogg, 1977; Dayton & Macready, 1976;

Duncan & Sloane, 1982; Goodman, 1974 & 1979; Macready & Dayton, 1977 & 1980).

Dichotomous manifest variables, which are applicable to a wide range of

content areas, are frequently used with latent class models. Equation 1

defines a general latent class model that may be used with dichotomously-scored

variables.

J I ri 1-ri
P ( r )

j1 1

Oj
1

mij (1 - «i j) (1)=- (1)

where:

r - vector of ri = (0,1) manifest responses for variables i = 1,...,I;

Oj - probability of membership in the jth latent class;

mij = probability of a level one (i.e., positive or correct)

response to the ith manifest variable given that the assessed

element (e.g., respondent) is a member of the jth latent class.

There are some basic assumptions underlying this latent class model.

First, it is assumed that the latent classesare is mutually-exclusive and
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exhaustive. Second, it is assumed that local independence (see Goodman, 1974)

is present within latent classes. This means that the manifest variables

conditional on latent class membership are independent and, thus,

A ..ri .01,,
P(r I LCumj) Third, it is assumed that the response

i1 1.1 t

options to each manifest variable i are mutually-exclusive and exhaustive.

The likelihood function for the estimation of latent class model

parameters is:

A - 1h
1

P ( r1 ) (2) (2)
-

where 1 is the respondent index.

A maximum likelihood fit statistic may be derived, which is based on the

likelihood function in Equation 2. This statistic is:

G2 . -2 In A (3) (3)

Bartlett (1937) showed that as N increases, the distribution of G2 approaches a

x2 distribution with degrees of freedom:

df - 21 - 1 - (J - 1) - IJ (4) (4)

where:

I - number of dichotomous manifest variables;

J - number of latent classes.
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A Pearson fit statistic may also be derived. This statistic is:

X2 = 2
14

( fi - Fi )2 / F1 (5)

where:

fl = observed frequency for response pattern 1;

F1 = expected frequency for response pattern 1,

based on the estimated model.

(5)

It is also distributed asymptotically as x2 with degrees of freedom specified

in Equation 4.

In addition to the absolute fit of a selected model, it is also possible

to test in the same manner the absolute fits of one or more constrained

versions of that model. There are several ways in which a model may be

restricted. Three basic methods were discussed by Dayton & Macready (1988).

These three methods involve the imposition of linear, linear logistic, and

other functional constraints. Recent developments in latent class modeling

have incorporated outside variables within the model which allow for

interesting new formulations of constrained models (Clogg & Goodman, 1984, 1985

& 1986; Formann, 1982, 1984, 1985; Dayton & Macready, 1988; Macready & Dayton,

1986).

The ?pplication of linear constraints is the most widely reported method

that is used for restricting models (Bergan, 1982; Clegg 1981; Dayton &

Macready, 1976; Macready & Dayton, 1980). There are two special cases of

linear constraints, which have frequently been considered in the application of

latent class modeling. The first case involves fixing parameters at user-

specified values. The second case involves equating, in which the values of

two or more parameters are set equal to one another.
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Although the value of the maximized likelihood for a given model is

greater than or equal to that of any model it subsumes (i.e., a model that is

obtained by placing one or more constraints on the parameters of the initial

model), sometimes a more constrained model will provide fit that approaches

that obtained under the more general subsuming model. In addition, the

constrained model provides an advantage of increased parsimony. This increased

parsimony provides a gain in degrees of freedom, resulting from the reduced

number of independent parameters to be estimated.

The degrees of freedom for the constrained model are expressed in terms of

Equation 4 as:

dfc dfs + K (6) (6)

where:

dfs - degrees of freedom for the subsuming model;

K = the number of non-redundant constraints placed on the

parameters in the more general model in defining the subsumed model.

The final selection of a preferred model should be based upon a balance

between fit and parsimony. Fit requires that a model is able to effectively

explain or replicate the data. Parsimony requires that a model is as simple

(i.e., constrained) as possible. Thus a preferred model is one which is as

simple as possible yet still provides acceptable fit to the data.

Method

This study is based on mixtures of latent binomial distributions, using

data generated from five dichotomous manifest variables. The number of

response patterns for those variables is 25 - 32. A total of sixteen data sets

were generated, representing two generation models under eight data
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conditions resulting from all combinations of three independent variables at

two levels each.

The IMSL (1980) subroutine, GGUBS, was used to generate random numbers in

a uniform distribution, ranging from zero to one. These random numbers were

used to produce the raw data for the study. The frequencies for the response

patterns were produced by comparing the generated numbers to each of the 32

cumulative probability intervals. This was repeated for 1000 replications for

each of the sixteen data generation conditions that are considered.

Two latent class models were specified for the data generation. The first

criterion for the selection of those models was their applicability to a wide

range of research in the areas of education, psychology, and other social

sciences. The second criterion was that they were as unconstrained as was

feasible.

The first generation model is a general unconstrained 2-class model

defined by Equation 1. The second model is a 3-class constrained model with

equality restraints imposed on the conditional probabilities. An unconstrained

3-class model was originally considered for this second generation model.

However, it was rejected because, although it is in general identified, a

comparable 4-class unconstrained model which would have been appropriate for
a

comparison would is not identified for 1.5.

The first independent variable is sample size, which has been recognized

as an important factor affecting the distribution of the logarithm of the

likelihood ratio. The values selected are based, in part, on the results of

Hayek (1978), as well as on practical considerations. The first level of this

variable is specified as N-160, which results in an average cell frequency of 5

for each of the 32 response patterns. The second level is specified as N -960,

which results in an average cell frequency of 30 per response pattern.
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The remaining two independent variables vary the levels of the two types

of parameters used in defining latent class models. This includes the

magnitude of the disparity of mij across latent classes and the proportion of

elements from each latent class.

The first level of the disparity of aii, which is "small" disparity,

places the response probabilities near the center of the parameter space. The

second level, which is "large" disparity, places them nearer the boundaries of

the space. The specific values of mii for the 2 -class generation model are

designated in Table 1. This type of model has been proposed for use in the

assessment of mastery (see Macready & Dayton, 1980), as well as a wide variety

of other uses (see Bergan, 1982 and Clogg, 1981).

(Insert Table 1 about here)

Note from Table 1 that there is no overlap in the ranges of aij values across

latent classes, and there is equal variability of mij values within each latent

class.

The specific values of mii for the 3-class constrained generation model

are listed in Table 2. The restraints imposed on the second latent class

specify that 092 - 093 for i 1,2 and 042 - 91 for i - 3,4,5. Constraints of

this type are applicable when the three latent classes represent progressive

states of acquisition (i.e., non-acquisition, partial acquisition, and

acquisition), as suggeqed by Dayton & Macready (1976).

(Insert Table 2 about here)

9



7

The last manipulated variable considered in this study is the relative

proportion of elements from each latent class. The first level of latent

mixture considered is equal latent proportions, where 01 = 02 = .5 for the

2-class generation model and 01 = 02 = 03 = .333 for the 3-class generation

model. The second level considered is an unequal latent class mixture, where

01 = .8 and 02 = .2 for the 2-class generation model and 01 = .6, 02= .3, and

03 = .1 for the 3-class generation model. The first level of this variable

places the parameters near the center of the parameter space, while the second

level places them nearer the boundaries of that space.

Parameter Estimation

Maximum likelihood estimation was used to estimate the model parameters.

Clogg's (1977) FORTRAN program, which is based on the Iterative Proportional

Fitting algorithm (Goodman, 1979), was adapted and used as a subroutine for

this purpose.

It may be noted that the Newton-Raphson procedure could alternatively have

been used in parameter estimation. This is the algorithm which is used in the

general purpose computer program written by Formann (1984). An advantage of

this alternative approach is that convergence is usually reached in a fewer

number of iterations. However, the time in which each iteration is completed

is usually somewhat longer.

Parameters were estimated for the two generation models and for a series

of subsumed and subsuming models. The two criteria for the selection of the

models were their applicability for research and their relation to the

generation models. The data generated from the 2-class model were used to

estimate parameters for that model, as well as for an unconstrained 1-class

model, an unconstrained 3-class model, a constrained 3-class model, and a
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constrained 4-class model. Similarly, the data generated from the 3-class

model were used to estimate parameters for that model, as well as for an

unconstrained 1-class model, an unconstrained 2-class model, and a constrained

4-class model.

The constrained 3-class models considered under both levels of data

generation are the same model. The constrained 4-class model is specified with

the same constraints on the first three latent classes as those imposed for the

constrained 3-class model. In addition, constraints on the fourth latent class

are: 94 = 91 for i - 1,2 and 94 = 93 for i - 3,4,5. This model

corresponds to an acquisition model in which item subsets (1,2) and (3,4,5) are

at the same latent level of acquisition, namely, "masters" or

"non - masters" (see Macready, 1982)'.

Two separate fit statistics were derived for each model estimation. Those

are G2, defined in Equation 3, and Pearson x2, defined in Equation 5.

Analysis

The distributions of fit statistics in this study were analyzed according

to their overall fit to x2 distributions with the appropriate degrees of

freedom. Each distribution of 1000 observed statistics was divided into 100

intervals, based on a central x2 distribution. Each of these intervals,

therefore, had an expected cell frequency of 10. A Pearson x2 statistic with

99 degrees of freedom was calculated to assess the fit of the observed G2 and

Pearson x2 fit statistics to a central x2 distribution.

In addition to overall fit, each of the distributions is examined in terms

of its tail weights. The tail weights for the distributions are compared to

the distribution means and to the overall fit statistics.

11



9

Results

The goodness of fit for each model estimation is examined first. These

are reported in Tables 3 through 6.

(Insert Table 3 about here)

The fit of the observed statistics to a x2 distribution is presented in

Table 3 for the generation models. All of the observed Pearson x2 statistics

are distributed as x2, while the G2 statistics are consistently distributed as

X
2 only at N-960. Although there are some exceptions, the average fit is

better for Pearson x2 than for G2 at both sample sizes. The fit is also

better, on the average, for both statistics at N-960 than at N -160. At both

sample sizes, G2 consistently demonstrates better fit when there is small

disparity in the conditional probabilities. Pearson x2 does not show any

pattern of performance in relation to thfi:Variable.

The fit statistics are also examined for the estimation of the subsuming

models that are overfitted to the data. One estimation for an unconstrained

model is reported in )(dole 4, and three estimations for constrained models are

reported in Table 5.

(Insert Table 4 about here)

Table 4 contains the data generated under the 2-class unconstrained model

and estimated under a 3-class unconstrained model. With the exception of

Pearson x2 at N-160, the average fit statistics for this estimation are not

distributed as x2. The average fit for both statistics becomes worse as sample

size increases, which contradicts the pattern of fit for the generation models.
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(Insert Table 5 about here)

The results of the estimation under a series of constrained subsuming

models are listed in Table 5. In general, the estimation of the 3-class

constrained model for the data generated under the 2-class model demonstrates

better fit than the estimation of the 4-class constrained model for the data

from either of the generation models. However, there is a pattern of fit

across these three subsuming models that parallels the generation models. On

the average, Pearson x2 fits better than G2 and the fit for both statistics

better at N-960. In addition, G2 consistently shows better fit when the

disparity is small for the conditional probabilities.

(Insert Table 6 about here)

The fit statistics are examined last for the 1-class and 2-class

unconstrained nonfitting subsumed models. These are reported in Table 6. The

fit to a x2 distribution is consistently better for the estimation of the

2-class model from data generated under the 3-class model than for the

estimation of the 1-class model from data generated under both models. For the

estimation of the 2-class model, the pattern of fit is the same for both

Pearson x2 and G2. They are distributed as x2 only when N-160 and there is

small dispari., in the conditional probabilitie;. Although neither statistic

for the estimation of the 1-class model is distributed as x2, the fit is

consistently better for both statistics for N-160 and small disparity in the

conditional probabilities. In addition, the deviation from x2 is not as great

for any of the subsumed models when latent class membership is unequal.
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In addition to testing goodness of fit for each of the model estimations,

the mean and variance are examined for each distribution. These are reported

in Tables 7 through 10.

(Insert Table 7 about here)

Table 7 contains the means and variances for the estimation of the

oneration models. The means of the distributions exhibit the same pattern as

the goodness of fit, but the pattern for the variances is not consistent. For

the distributions of G2 statistics at N-160 that deviate from X2, the .,sans are

all larger than their expected values. The means for G2 at N-960 are

consistently smaller and closer to their expected values than at N-160. The

means for Pearsw x2 are consistently smaller than the means for G2 and are, on

the average, closer to the expected values for both sample sizes. When the

disparity in the conditional probabilities is small, the means for G2 are

consistently smaller and closer to their expected values than when disparity is

large.

(Insert Table 8 about here)

The means and variances for the estimation of the unconstrained subsuming

model are reported in Table 8. The direction of deviation for this estimation

is opposite that observed for the generation models. In this case, the larger

means of the distributions for G2 and N-160 are closer to their expected value

than the smaller means observed for Pearson x2 and N-960. The pattern for the

means is paralleled by the pattern for the variances for this estimation.

14
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(Insert T ?ble 9 about here)

The means and variances are reported in Table 9 for the three estimations

of the constrained subsuming models. The pattern, including the direction of

deviation, for the means of the distributions for these estimations is

consistent with that observed for the generation models. In general, the means

are smaller and closer to their expected values for N=960 and for Pearson x2 at

both sample sizes. The means for G2 at N -160, which are the largest and

farthest from their expected values, are not as deviant when there is small

disparity in the conditional probabilities.

(Insert Table 10 about here)

Table 10 contains the means and variances for the estimation of the

1-class and 2-class subsumed models. The pattern for the means and variances

is consistent with the pattern of fit for these estimations. In general, the

means and variances for both statistics are smaller and closer to their

expected values when N-160, there is small disparity in the conditional

probabilities, and latent class membership is unequal. For the 1-class model

when the disparity in the conditional probabilities is large, the deviation for

Pearson x2 is greater than for G2.

In addition to the overall fit and first two moments, the tail weights of

the distributions of fit statistics are examined. It is in the tail of a

distribution that a decision is made regarding the acceptance or rejection of a

model for a given set of data. Tables 11 through 14 contain the proportion of

rejections at the critical values of .01, .05, and .10.
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(Insert Table 11 about here)

The tail weights for the generation models are listed in Table 11.

Pearson x2 produces an appropriate proportion of rejections, on the average,

for both sample sizes. G2 generally produces a larger proportion of rejections

than Pearson x2, with the largest discrepancy observed at N -160. These heavier

tail weights for the distributions of G2 are consistent with their larger means

reported in Table 8. The improvement of G2 for small disparity in the

conditional probabilities is not as consistent in the tails as it is in the

goodness of fit. On the average, there is improvement for both sample sizes at

.10, improvement only for the small samples at .05, and no improvement at .01.

(Insert Table 12 about here)

The tail weights for the estimation of the unconstrained subsuming model

are listed in Table 12. The pattern of the tail weights for this estimation

parallels Cit. gitterns for the means and variances. The heaviest tail weights,

which dm , lc.;est to their expected values, are observed for G2 at N-160.

Pearson k2 and N-960 produce an inappropriately small proportion of rejections.

(Insert Table 13 about here)

Table 13 contains the tail weights for the estimation of the constrained

subsuming models. These results are consistent with the tail weights from the

estimation of the generation models. The average tail weights for Pearson X2,
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which are the same for both sample sizes, are smaller and closer to their

expected values than for G2. G2 produces as inappropriately large proportion

of rejections, particularly at N-160. The effact of small disparity in the

conditional probabilities on G2 is inconsistent. It is nonexistent at .01,

moderate at .05, and larger at .10.

(Insert Table 14 about here)

The tail weights for the estimation of the subsumed models are listed in

Table 14. The tails for these estimations are generally larger than expected,

resulting in an inappropriately large proportion of rejections. The tail

weights that are smallest and closest to thei, cyparted values are associated

with N.160, small disparity in the conditional probabilities, and unequal

latent class membership. This is consistent with the pattern of fit and the

observed means of these distributions. The largest effect on the tP:1 weights

is the disparity of the conditional probabilities. The large disparity

condition produces tail weights of 1.00 for both statistics, indicating that

all 1000 statistics in each distribution fall beyond 11/4.001.

Discussion

The nature of the estimated model influences the direction of deviation

for those statistics that are not distributed as x2. The direction is

consistent for the generation models, the constrained subsuming models, and the

subsumed models. In each of these estimations, the distributions that deviate

from x2 contain statistics that are larger than their expected values.

However, the distributions that deviate from x2 for the estimation of the
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unconstrained subsuming model contain statistics that are smaller than their

expected values.

Sample size is an important variable in determining the distribution of

the fit statistics. The larger sample size produces statistics that are

smaller in value for the estimation of the generation and subsuming models and

larger in value for the estimation of the subsumed models. For the estimation

of the generation models and constrained subsuming models, the smaller

statistics result in a slightly better fit for Pearson X2 and a much better fit

for G2. However, for the estimation of the unconstrained subsuming model, the

smaller statistics result in a slightly worse fit on the average for G2 and a

much worse fit for Pearson x2. For the subsumed models, the larger statistics

result in a worse fit for both statistics.

The disparity of the conditional probabilities also affects the

distribution of the fit statistics. Small disparity produces a better fit for

G2 for the estimation of the generation models and constrained subsuming

models. It also produces a better fit for both statistics for the estimation

of the subsumed models. However, it has no consistent effect for the

estimation of the unconstrained subsuming model.

The equality of latent class membership only affects the estimation of the

subsumed models. For this estimation, unequal membership produces a better fit

for both statistics.

When the model that is estimated is an accurate reflection of the data,

the Pearson x2 fit statistic is distributed as X2. On the average, this

statistic results in an appropriate proportion of rejections for even a

relatively small sample size. However, G2 for the same estimation is

distributed as x2 only for the larger sample size. At the smaller sample size,

this statistic results in a larger average proportion of rejections than
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Pearson x2. At the larger sample size, G2 results in the same average

proportion of rejections as Pearson x2 at P -.01. However, it results in a

larger proportion of rejections at p-values of .05 and .10.

The true model is not normally known when the data are analyzed. However,

using 1-5 with the types of models examined in this study, some generalizations

are possible. If either fit statistic has a very large p-value in relation to

the critical value that is established, it is likely that the estimated model

underfits the data and a more complex model would be appropriate for testing.

If either fit statistic has a very small p-value in relation to the critical

value, it is possible that another less complex model would be appropriate. Jr

the fit statistic has a p-value that is relatively close to the critical value,

caution should be exercised and other factors should be considered in making a

decision on whether to accept or reject the model. These other factors include

sample size, disparity of the conditional response probabilities, equality of

latent class membership, and the specific fit statistic used. In particular,

G2 tends to have heavier tails than Pearson x2 and is more sensitive to the

disparity of the conditional probabilities and to sample size when the

estimated model is an accurate reflection of the data.
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TABlE 1

CONDITIONAL PROBABILITIES: 2-CLASS UNCONSTRAINED GENERATION MODEL

Small Disparity Large Disparity

Var. Latent latent Latent Latent

Class 1 Class 2 Class 1 Class 2

1 alin49 "12-.79 91-.29 92-.99

2 x21°47 "22-.77 "21-.27 "22-.97

3 "32-.75 "31-.25 "32-.95

4 miti°43 "42-.73 "41-.23 "42-.93

5 9131.41 "52-.71 91-.21 "52-.91
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TABLE 2

CONDITIONAL PROBABILITIES: 3-CLASS CONSTRAINED GENERATION MODEL

Small Disparity Large Disparity

Var. Latent Latent Latent Latent Latent Latent

t Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

I =11"49 al2 ='79 a13=79 cc11''29 =12''99 a13599

2 0C215.47 022-.77 "23-.77 =21-.27 92-.97 "23-.97

3 0C311111.45 0C321111.45 a33'75 0C3111.'25 =32'25 0C335.95

4 m415.43 0C42-.43 a43m.73 a41-.23 0C42--23 0C435.93

5 0051..41 a52-.41 0053-.71 91-.21 0052-.21 93..91
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TABLE 3

GOODNESS OF FIT FOR DISTRIBUTIONS OF LIKELIHOOD-RATIO AND PEARSON STATISTICS:
2-CLASS UNCONSTRAINED AND 3-CLASS CONSTRAINED GENERATION (FITTING) MODELS

# Classes Mixture Disparity l-ratio Pearson

2 Equal Small

_ti_

160 117.0 118.4
2 Equal Small 960 103.4 105.8

2 Equal Large 160 292.4* 117.6
2 Equal Large 960 109.8 105.4

2 Unequal Small 160 94.2 114.2
2 Unequal Small 960 110.6 116.6

2 Unequal Large 160 383.0* 130.8
2 Unequal Large 960 117.0 73.2

2 Combined Combined 160 221.6* 120.2
2 Combined Combined 960 110.2 100.2

3 Equal Small 160 166.2* 104.2
3 Equal Small 960 84.6 92.2

3 Equal Large 160 253.4* 126.0
3 Equal Large 960 117.6 88.2

3 Unequal Small 160 151.0* 91.2
3 Unequal Small 960 118.6 110.2

3 Unequal Large 160 429.4* 143.4
3 Unequal Large 960 130.8 108.2

3 Combined Combined 160 250.0* 116.2
3 Combined Combined 960 112.9 99.7

Combined Combined Combined 160 235.8* 118.2
Combined Combined Combined 960 111.6 100.0
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TABLE 4

GOODNESS OF FIT FOR DISTRIBUTIONS OF LIKELIHOOD-RATIO AND PEARSON STATISTICS:
ESTIMATION OF 3-CLASS UNCONSTRAINED SUBSUMING (OVERFITTED) MODEL

FROM DATA GENERATED UNDER 2-CLASS UNCONSTRAINED MODEL

Mixture. Disparity L-ratio Pearson

Equal Small

_N_

160 87.0 148.4*
Equal Small 960 203.2* 223.0*

Equal Large 160 194.2* 169.6*
Equal Large 960 132.4 191.8*

Unequal Small 160 123.8 115.2
Unequal Small 960 163.6* 167.6*

Unequal Large 160 218.6* 117.0
Unequal Large 960 150.4* 226.0*

Combined Combined 160 155.9* 137.6
Combined Combined 960 162.4* 202.1*

* P <.001
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TABLE 5

GOODNESS OF FIT FOR DISTRIBUTIONS OF LIKELIHOOD-RATIO AND PEARSON STATISTICS:
ESTIMATION OF 3-CLASS AND 4-CLASS CONSTRAINED SUBSUMING (OVERFITTED) MODELS

Gen. Model Est. Model Mixture Disparity 11... L-ratio Pearson

2-Class 3-Class Equal Small 160 144.6 107.6
2-Class 3-qass Equal Small 960 109.4 113.6
2-Class 3-Class Equal Large 160 375.0* 138.8
2-Class 3-Class Equal . Large 960 130.4 115.4
2-Class 3-Class Unequal Small 160 157.6* 101.8
9 -Class 3-Class Unequal Small 960 92.6 91.4
2-Class 3-Class Unequal Large 160 510.6* 143.0
2-Class 3-Class Unequal Large 960 130.4 79.0

2-Class 3-Class Combine° Combined 160 297.0* 122.8
2-Class 3-Class Combined Combined 960 115.7 99.8

2-Class 4-Class Equal Small 160 225.6* 121.0
2-Class 4-Class Equal Small 960 148.0 139.4
2-Class 4-Class Equal Large 160 514.6* 166.6*
2-Class 4-Class Equal Large 960 150.0* 129.8
2-Class 4-Class Unequal Small 160 241.6* 124.2
2-Class 4-Class Unequal Small 960 114.0 140.6
2-Class 4-Class Unequal Large 160 731.6* 208.4*
2-Class 4-Class Unequal Large 960 136.2 134.4

2-Class 4-Class Combined Combined 160 428.4* 155.0*
2-Class 4-Class Combined Combined 960 137 0 136.0

3-Class 4-Class Equal Small 160 204.4* 115.2
3-Class 4-Class Equal Small 960 104.4 99.0
3-Class 4-Class Equal Large 160 373.6* 132.4
3-Class 4-Class Equal Large 960 187.8* 119.0
3-Class 4-Class Unequal Small 160 192.6* 114.4
3-Class 4-Class Unequal Small 960 122.4 106.0
3-Class 4-Class Unequal Large 160 602.2* 220.0*
3-Class 4-Class Unequal Large 960 193.6. 127.6

3-Class 4-Class Combined Combined 160 343.2* 145.5*
3-Class 4-Class Combined Combined 960 152.0* 112.9

Combined Combined Combined Combined 160 356.2* 141.1
Combined Combined Combined Combined 960 134.9 116.2

* P <.001
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TABLE 6

GOODNESS OF FIT FOR DISTRIBUTIONS OF LIKELIHOOD-PATIO AND PEARSON STATISTICS:
ESTIMATION OF 1-CLASS AND 2-CLASS UNCONSTRAINED SUBSUMED (NONFITTING) MODELS

Gen. Model Est Model Mixture Disparity 11_ L-ratio Pearson

3-Class 2-Class Equal Small 160 146.2 116.8
3-Class 2-Class Equal Small 960 473.6* 465.8*
3-Class 2-Class Equal Large 160 76023.2* 68209.2*
3-Class 2-Class Equal Large 960 99000.0* 99000.0*
3-Class 2-Class Unequal Small 160 100.4 113.4
3-Class 2-Class Unequal Small 960 183,40* 156.2*
3-Class 2-Class Unequal Large 160 47977.8* 43923.0*
3-Class 2-Class Unequal Large 960 99000.0* 99000.0*

3-Class 2-Class Combined Combined 160 31061.9* 28090.6*
3-Class 2-Class Combined Combined 960 49664.2* 49655.5*

2-Class 1-Class Equal Small 160 8989.2* 11415.8*
2-Class 1-Class Equal Small 960 99000.0* 99000.0*
2-Class 1-Class Equal Large 160 99000.0* 99000.0*
2-Class 1-Class Equal Large 960 99000.0* 99000.0*
2-Class 1-Class Unequal Small 160 1621.9* 1111.4*
2-Class 1-Class Unequal Small 960 66849.0* 73581.2*
2-Class 1-Class Unequal Large 160 99000.0* 99000.0*
2-Class 1-Class Unequal Large 960 99000.0* 99000.0*

2-Class 1-Class Combined Combined 160 52152.8* 52631.8*
2-Class 1-Class Combined Combined 960 90962.2* 92645.3*

3-Class 1-Class Equal Sall 160 2112.2* 1676.2*
3-Class 1-Class Equal Small 960 75144.2* 79835.8*
3-Class 1-Class Equal Large 160 99000.0* 99000.0*
3-Class 1-Class Equal Large 960 99000.0* 99000.0*
3-Class 1-Class Unequal Small 160 542.0* 271.4*
3-Class 1-Class Unequal Small 960 9600.8* 11038.6*
3-Class 1-Class Unequal Large 160 98800.2* 98800.2*
3-Class 1-Class Unequal Large 960 99000.0* 99000.0*

3-Class 1-Class Combined Combined 160 50113.6* 49937.0*
3-Class 1-Class Combined Combined 960 70686.2* 72218.6*

Combined Combined Combined Combined 160 44442.8* 43553.1*
Combined Combined Combined Combined 960 70437.5* 71506.5*
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TABLE 7

MEAN AND VARIANCE OF DISTRIBUTIONS OF LIKELIHOOD-RATIO AND PEARSON STATISTICS:
2-CLASS UNCONSTRAINED AND 3-CLASS CONSTRAINS') GENERATION (FITTING) MODELS

# Classes Mixture Disparity

Mean_ Variance
Lratto Pearson L-ratio Pearson

EXPECTED: 20.00 EXPECTED: 40.QQ

2 Equal Small 160 20.98 19.37 47.34 36.76
2 Equal Small 960 20.02 19.83 43.6f 42.19

2 Equal Large 160 22.65 20.07 36.10 41.73
2 Equal Large 960 20.50 19.92 41.76 39.34

2 Unequal Small 160 20.95 19.61 46.55 36.45
2 Unequal Small 960 19.98 19.82 38.66 37.44

2 Unequal Large 160 23.38 20.99 39.71 41.28
2 Unequal Large 960 20.44 20.01 40.66 38.51

2 Combined Combined 160 21.99 20.01 42.42 39.06
2 Combined Combined 960 20.24 19.90 41.18 39.37

EXPECTED: 19.00 EXPECTED: 38.00

3 Equal Small 160 20.53 18.77 42.40 32.78
3 Equal Small 960 19.04 18.86 39.34 37.93

3 Equal Large 160 21.16 19.57 32.57 44.13
3 Equal Large 960 20.15 19.22 42.89 39.27

3 Unequal Small 160 20.37 18.91 40.85 32.59
3 Unequal Small 960 19.26 19.11 37.66 36.64

3 Unequal Large 160 22.42 20.36 38.10 40.51
3 Unequal Large 960 19.96 19.41 37.60 35.26

3 Combined Combined 160 21.12 19.40 38.48 37.50
3 Combined Combined 960 19.60 19.15 39.37 37.28
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TABLE 8

MEAN AND VARIANCE OF DISTRIBUTIONS OF LIKELIHOOD-RATIO AND PEARSON STATISTICS:
ESTIMATION OF 3-CLASS UNCONSTRAINED SUBSUMING (OVERFITTED) MODEL

FROM DATA GENERATED UNDER 2-CLASS UNCONSTRAINED MODEL

Mixture Disparity

Mean Variance
L-ratio Pearson L-ratio Pearson

EXPUTED: 14.00 EXPECTED: 28.00

Equal Small 160 14.05 12.84 31.59 23.73
Equal Small 960 12.33 12.21 23.41 22.47

Equal Large 160 14.91 12.89 20.92 19.17
Equal Large 960 12.76 12.24 22.85 19.69

Unequal Small 160 14.33 13.36 31.27 24.02
Unequal Small 960 12.60 12.52 22.84 22.29

Unequal Large 160 15.51 13.53 24.36 21.75
Unequal Large 960 12.70 12.31 22.84 20.30

Combined Combined 160 14.70 13.16 27.04 22.17
Combined Combined 960 12.60 12.32 22.98 21.19
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TABLE 9

MEAN AND VARIANCE OF DISTRIBUTIONS OF LIKELIHOOD-RATIO AND PEARSON STATISTICS:
ESTIMATION OF 3-CLASS AND 4-CLASS CONSTRAINED SUBSUMING (OVERFITTED) MODELS

LAA, f. Mod. Mixture Disparity _N_

Mean Variance__
1 -ratio Pearson L-ratio Pearson

EXPECTED: 19.00 EXPECTED: 38.00

2-Cl. 3-Cl. Equal Small 160 20.45 18.87 45.62 35.22
2-Cl. 3-Cl. Equal Small 960 19.54 19.36 43.41 41.99
2-Cl. 3-Cl. Equal Large 160 22.14 19.51 34.67 38.78
2-Cl. 3-Cl. Equal Large 960 19.98 19.38 41.08 38.11
2-Cl. 3-Cl. Unequal Small 160 20.60 19.27 46.82 36.67
2-Cl. 3-Cl. Unequal Small 960 19.47 19.32 36.93 35.75
2-Cl. 3-Cl. Unequal Large 160 22.89 20.47 38.16 39.38
2-Cl. 3-Cl. Unequal. Large 960 19.98 19.52 39.96 37.49

2-Cl. 3-Cl. Combined Combined 160 21.52 19.53 41.32 37.51
2-Cl. 3-Cl. Combined Combined 960 19.74 19.40 40.34 38.34

EXPECTED: 18.00 EXPECTED: 36.00

2-Cl. 4-Cl. Equal Small 160 20.18 18.62 44.86 34.76
2-Cl. 4-Cl. Equal Small 960 19.26 19.08 42.97 41.51
2-Cl. 4-Cl. Equal Large 160 21.85 19.17 34.21 37.88
2-Cl. 4-Cl. Equal Large 960 19.50 18.87 40.29 36.99
2-Cl. 4-Cl. Unequal Small 160 20.34 19.03 46.32 36.36
2-Cl. 4-Cl. Unequal Small 960 19.24 19.08 36.16 34.96
2-Cl. 4 -ti. Unequal Large 160 22.63 20.11 37.79 38.67
2-Cl. 4-Cl. Unequal Large 960 19.57 19.09 40.00 37.53

..-Cl. 4-Cl. Combined Combined 160 21.25 19.23 40.80 36.92
2-Cl. 4-Cl. Combined Combined 960 19.39 19.03 39.86 37.75

3-Cl. 4-Cl. Equal Small 160 20.10 18.30 42.18 32.24
3-Cl. 4-Cl. Equal Small 960 18.54 18.35 38.90 37.57
3-Cl. 4-Cl. Equal Large 160 20.83 19.01 31.53 40.78
3-Cl. 4-Cl. Equal Large 960 19.80 18.84 41.88 37.76
3-Cl. 4-Cl. Unequal Small 160 20.01 18.53 40.72 32.16

4-Cl. Unequal Small 960 18.68 18.54 36.37 35.41
2-Cl. 4-Cl. Unequal Large 160 22.15 19.89 37.84 39.53
3-Cl. 4-Cl. Unequal Large 960 19.60 18.99 37.17 34.27

3-Cl. 4-Cl. Combined Combined 160 20.77 18.93 38.07 36.18
3-Cl. 4-Cl. Combined Combined 960 19.16 18.68 38.58 36.25
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TABLE 10

MEAN AND VARIANCE OF DISTRIBUTIONS OF LIKELIHOOD-RATIO AND PEARSON STATISTICS:
ESTIMATION OF 1-CLASS AND 2-CLASS UNCONSTRAINED SUBSUMED (NONFITTING) MODELS

um, Lim, Mixture Disoaritv

3-Cl. 2-Cl. Equal

3-Cl. 2-Cl. Equal
3-Cl. 2-Cl. Equal

3-Cl. 2-Cl. Equal

3-Cl. 2-Cl. Unequa
3-Cl. 2-Cl. Unequal Sma
3-Cl. 2-Cl. Unequal Large
3-Cl. 2-Cl. Unequal Large

160T.

960

160

960
0

0

160

960

3-Cl. 2-Cl. Combined Combined 160
3-Cl. 2-Cl. Combined Combined 960

2-Cl. 1-Cl. Equal Small 160
2-Cl. 1-Cl. Equal Small 960
2-Cl. 1-Cl. Equal Large 160
2-Cl. 1-Cl. Equal Large 960
2-Cl. 1-Cl. Unequal Small 160
2-Cl. 1-Cl. Unequal Small 960
2-Cl. 1-Cl. Unequal Large 160

2-Cl. 1-Cl. Unequal Large 960

2-Cl. 1-Cl. Combined Combined 160

2-Cl. 1-Cl. Combined Combined 960

3-Cl. 1-Cl. Equal Small 160
3-Cl. 1-Cl. Equal Small 960
3-Cl. 1-Cl. Equal Large 160

3-Cl. 1-Cl. Equal Large 960
3-Cl. 1-Cl. Unequal Small 160
3-Cl. 1-Cl. Unequal Small 960
3-Cl. 1-Cl. Unequal Large 160
3-Cl. 1-Cl. Unequal Large 960

3-Cl. 1-Cl. Combined Combined 160
3-Cl. 1-Cl. Combined Combined 960

Mean Variance
Iznik Pearson L-ratio Pearson

UPECTED: 20.00 EXPECTED: 40.00

21.37 19.71 45.02 36.54

3 45 23.60 57.45 57.23
W.06 49.71 138.13 162.76
192.29 188.67 647.63 591.02

# 20.85 19.39 41.85 33.31
21.86 21.73 45.89 45.04

44.24 42.60 133.75 126.05
158.97 167.43 721.88 544.96

34.38 32.85 89.69 89.66
99.19 100.36 368.24 309.56

EXPECTED: 26.00 EXPECTED: 56.00

40.00 41.00 122.18 155.67
99.64 112.47 365.66 582.22
298.68 502.81 1009.04 7577.71
1653.28 2884.88 5539.93 41136.48
33.16 32.21 89.52 88.34
58.32 62.55 184.28 249.90

172.93 455.00 926.54 11163.24

895.40 2628.31 5590.45 66897.17

136.19 257.76 536.82 4746.24
676.66 1422.05 2920.08 27216.44

34.30 33.40 86.41 89.34
60.68 64.15 190.45 241.46
193.06 289.27 707.64 3166.93

1006.99 1586.46 3700.49 16342.46
30.50 28.86 67.31 60.03
40.73 41.23 119.13 129.70
103.58 163.56 423.34 2508.56
482.00 866.08 2261.72 14461.77

90.36 128.77 321.18 1456.22
397.60 639.48 1567.95 7793.85

. ".
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TABLE 11

TAIL WEIGHTS FOR DISTRIBUTIONS OF LIKELIHOOD-RATIO AND PEARSON STATISTICS:
2-CLASS UNCONSTRAINED AND 3-CLASS CONSTRAINED GENERATION (FITTING) MODELS

L-ratio Pearson
Expected values: .01 .05 .10 .01 .05 .10

#Classes Mixture Disparity

2 Equal Small

_N_

160 .02 .08 .14 .01 .04 .08

2 Equal Small 960 .02 ,05 .10 .01 .05 .09

2 Equal Large 160 .01 .09 .16 .02 .06 .10

2 Equal Large 960 .01 .06 .12 .01 .05 .11

2 Unequal Small 160 .02 .07 .13 .01 .03 .09

2 Unequal Small 960 .01 .06 .10 .01 .06 .10

2 Unequal La)oe 160 .02 .10 .22 .01 .06 .12

2 Unequal 1,'ou 960 .01 .06 .11 .01 .05 .10

2 Combined Combined 160 .02 .08 .16 .01 .04 .10
2 Combined Combined 960 .01 .06 .11 .01 .05 .10

3 Equal Small 160 .02 .08 .16 .01 .04 .08
3 Equal Small 960 .01 .06 .10 .01 .05 .10

3 Equal Large 160 .02 .07 .14 .02 .06 .11

3 Equal Large 960 .02 .07 .15 .02 .06 .10

3 Unequal Small 160 .02 .08 .15 .01 .03 .08
3 Unequal Small 960 .01 .05 .10 .01 .05 .10

3 Unequal Large 160 .02 .12 .23 .02 .08 .14

3 Unequal Large 960 .01 .06 .12 .01 .05 .10

3 Combined Combined 160 .02 .09 .17 .02 .05 .10

3 Combined Combined 960 .01 .06 .12 .01 .06 .10

Combined Combined Combined 160 .02 .09 .17 .01 .05 .10
Combined Combined Combined 960 .01 .06 .11 .01 .05 .10

2e1
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TABLE 12

TAIL WEIGHTS FOR DISTRIBUTIONS OF LIKELIHOOD-RATIO AND PEARSON STATISTICS:
ESTIMATION OF 3-CLASS UNCONSTRAINED SUBSUMING (OVERFITTED) MODEL

FROM DATA GENERATED UNDER 2-CLASS UNCONSTRAINED MODEL

L-ratio Pearson

Expected values: .01 .05 .10 .01 .05 .10

Mixture Disbaritv

Equal Small

_N_

160 .01 .06 .11 .01 .03 .07
Equal Small 960 .01 .02 .05 .00 .03 .05

Equal Large 160 .00 .04 .09 .00 .02 .05
Equal Large 960 .00 .03 .05 .00 .01 .04

Unequal Small 160 .01 .05 .11 .01 .03 .06
Unequal Small 960 .00 .03 .06 .00 .02 .06

Unequal Large 160 .01 .06 .13 .00 .03 .06
Unequal Large 960 .00 .03 .06 .00 .02 .05

Combined Combined 160 .01 .05 .11 .00 .03 .06
Combined Combined 960 .00 .03 .06 .00 .02 .05

35
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TABLE 13

TAIL WEIGHTS FOR DISTRIBUTIONS OF LIKELIHOOD-RATIO AND PEARSON STATISTICS:
ESTIMATION OF 3-CLASS AND 4-CLASS CONSTRAINED SUBSUMING (OVERFITTED) MODELS

L-ratio Pearson

Expected values: .01 .05 .10 .01 .05 .10

112,11, E. Mod. Mixturq Disparity 11_

2-Cl. 3-Cl. Equal Small 160 .02 .08 .15 .01 .04 .09

2-Cl. 3-Cl. Equal Small 960 .02 .06 .11 .02 .05 .10.

2-Cl. 3-Cl. Equal Large 160 .02 .10 .18 .02 .07 .11

2-Cl. 3-Cl. Equal Large 960 .02 .07 .13 .01 .06 .12

2-Cl. 3-Cl. Unequal Small 160 .02 .09 .15 .01 .05 .10

2-Cl. 3-Cl. Unequal Small 960 .01 .05 .10 .01 .06 .10

2-Cl. 3-Cl. Unequal Large 160 .02 .12 .25 .02 .08 .14

2-Cl. 3-Cl. Unequal Large 960 .01 .06 .12 .01 .06 .11

2-Cl. 3-Cl. Combined Combined 160 .02 .10 .18 .02 .06 .11

2-Cl. 3-Cl. Combined Combined 960 .02 .06 .12 .01 .06 .11

2-Cl. 4-Cl. Equal Small 160 .03 .10 .18 .01 .06 .11

2-Cl. 4-Cl. Equal Small 960 .03 .07 .13 .02 .07 .12

2-Cl. 4-Cl. Equal Large 160 .02 .12 .21 .02 .08 .12

2-Cl. 4-Cl. Equal Large 960 .02 .08 .15 .01 .07 .13

2-Cl. 4-Cl. Unequal Small 160 .03 .11 .19 .02 .06 .12

2-Cl. 4-Cl. Unequal Small 960 .02 .07 .13 .01 .07 .12

2-Cl. 4-Cl. Unequal Large 160 .03 .16 .28 .02 .09 .17

2-Cl. 4-Cl. Unequal Large 960 .02 .08 .14 .02 .07 .13

2-Cl. 4-Cl. Combined Combined 160 .03 .12 .22 .02 .07 .13

2-Cl. 4-Cl. Combined Combined 960 .02 .08 .14 .02 .07 .12

3-Cl. 4-Cl. Equal Small 160 .02 .10 .18 .01 .05 .10

3-Cl. 4-Cl. Equal Small 960 .02 .06 .12 .02 .06 .11

3-Cl. 4-Cl. Equal Large 160 .02 .08 .15 .02 .06 .11

3-Cl. 4-Cl. Equal Large 960 .02 .09 .18 .02 .06 .12

3-Cl. 4-Cl. Unequal Small 160 .02 .10 .17 .01 .05 .10

3-Cl. 4-Cl. Unequal Small 960 .01 .06 .11 .01 .06 .11

3-Cl. 4-Cl. Unequal Large 160 .03 .15 .27 .02 .09 .16

3-Cl. 4-Cl. Unequal Large 960 .02 .08 .16 .01 .05 .13

3-Cl. 4-Cl. Combined Combined 160 .02 .11 .19 .02 .06 .12

3-Cl. 4-Cl. Combined Combined 960 .02 .07 .14 .02 .06 .12

Combined Combined Combined Combined 160 .02 .11 .20 .02 .06 .12

Combined Combined Combined Combined 960 .02 .07 .13 .02 .06 .12
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TABLE 14
TAIL WEIGHTS FOR DISTRICUTIONS OF LIKELIHOOD-RATIO AND PEARSON STATISTICS:

ESTIMATION OF 1-CLASS AND 2-CLASS UNCONSTRAINED SUBSUMED (NONFITTING) MODELS

L-ratio Pearson

Expected values: .01 .05 .10 .01 .05 .10

G.Mod. E.Mod. Mixture Disparity

3-Cl. 2-Cl. Equal Small 160 .02 .08 .15 .01 .04 .08

3-Cl. 2-Cl. Equal Small 960 .05 .16 .24 .05 .15 .24

3-Cl. 2-Cl. Equal Large 160 .88 .96 .98 .83 .95 .97

3-Cl. 2-Cl. Equal Large 960 1.00. 1.00 1.00 1.00 1.00 1.00

3-Cl. 2-Cl. Unequal Small 160 .01 .06 .13 .00 .03 .07

3-Cl. 2-Cl. Unequal Small 960 .02 .09 .16 .02 .08 .16

3-Cl. 2-Cl. Unequal Large 160 .69 .87 .93 .66 .85 .91

3-Cl. 2-Cl. Unequal Large 960 1.00 1.00 1.00 1.00 1.00 1.00

3-Cl. 2-Cl. Combined Combined 160 .40 .49 .55 .38 .47 .51

3-Cl. 2-Cl. Combined Combined 960 .52 .56 .60 .52 .56 .60

2-Cl. 1-Cl. Equal Small 160 .28 .50 .62 .33 .52 .61

2-Cl. 1-Cl. Equal Small 960 1.00 1.00 1.00 1.00 1.00 1.00

2-Cl. 1-Cl. Equal Large 160 1.00 1.00 1.00 1.00 1.00 1.00

2-Cl. 1-Cl. Equal Large 960 1.00 1.00 1.00 1.00 1.00 1.00

2-Cl. 1-Cl. Unequal Small 160 .11 .25 .36 .08 .22 .32

2-Cl. 1-Cl. Unequal Small 960 .82 .94 .97 .86 .95 .97

2-Cl. 1-Cl. Unequal Large 160 1.00 1.00 1.00 1.00 1.00 1.00

2-Cl. 1-Cl. Unequal. Large 960 1.00 1.00 1.00 1.00 1.00 1.00

2-Cl. 1-Cl. Combined Combined 160 .60 .69 .74 .60 .68 .73

2-Cl. 1-Cl. Combined Combined 960 .96 .98 .99 .96 .99 .99

3-Cl. 1-Cl. Equal Small 160 .12 .28 .42 .10 .27 .37

3-Cl. 1-Cl. Equal Small 960 .87 .96 .9E .90 .97 .98

3-Cl. 1-Cl. Equal Large 160 1.00 1.00 1.00 1.00 1.00 1.00

3-Cl. 1-Cl. Equal Large 960 1.00 1.00 1.00 1.00 1.00 1.00

3-Cl. 1-Cl. Unequal Small 160 .04 .16 .25 .02 .10 .17

:-Cl. 1-Cl. Unequal Small 960 .29 .53 .66 .32 .54 .67

3 :1. 1-Cl. Unequal Large 160 1.00 1.00 1.00 1.00 1.00 1.00

3-Cl. 1-Cl. Unequal Large 960 1.00 1.00 1.00 1.00 1.00 1.00

3-Cl. 1-Cl. Combined Combined 160 .54 .61 .67 .53 .59 .64

3-Cl. 1-Cl. Combined Combined 960 .79 .87 .91 .80 .88 .91

Comb. Comb. Combined Combined 160 .51 .60 .65 .50 .58 .62

omb. Comb. Combined Combined 960 .75 .81 .83 .76 .81 .84


